
Soaplab - a unified Sesame door to analysis tools
Martin Senger, Peter Rice, Tom Oinn

European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
http://industry.ebi.ac.uk/soaplab

Abstract
Soaplab is a set of Web Services providing programmatic access to many applications on remote computers. Because
such applications in the scientific environment usually analyze data, Soaplab is often referred to as an Analysis Web
Service. It uses a unified (and partly standardized) API to find an analysis tool, discover what data it requires and what
data it produces, to start it and to obtain results. Soaplab is especially well suited for sets of similar tools, such as the
European Molecular Biology Open Software Suite (EMBOSS).

Introduction
Do you use command-line tools? Of course, you do...
Command-line tools are not only an integral part of
any operating system but they play a significant role in
any scientific domain. For example, in bioinformatics,
there are several sets of command-line tools for
analyzing data "in silico", one of the most prestigious
of them being the EMBOSS (1).

The advantages of using command-line tools are
tremendous: They are fast, efficient and usually easily
used by scripting languages. There are, however, also
limitations:

• There is no standardisation in the parameters
and invocation method for each different tool,
thus requiring the user to learn each tool
individually.

• Knowledge of the operating system or shell

facilities is often required (e.g. how to redirect
data flows, or how to call them
asynchronously).

• Generally invocation and processing takes

place on the same computer.

In spite of these issues, these tools represent an
Aladdin's cave of potential treasures for the scientist.
One possible approach to overcome their limitations is
to write a wrapper around them, making the command-
line tools unified, remotely accessible, and hiding their
dependencies on the underlying operating system.
Soaplab offers such wrappers, and in addition provides
for remote invocation of the tools.

Soaplab overview
The Soaplab solution adds complexity but it also
removes the fundamental limitations of the command-
line tools. It is a suitable approach especially if the task
can be summarized by the following facts:

• There is a useful command-line tool or set of

tools (such as EMBOSS).

• There is a need to access such tools from
other computers, either on a local network or
over the global internet.

• There is a requirement to access the tool

programmatically, as opposed to manual
invocation from the command line or through
some kind of CGI interface.

The last point in particular is important considering the
growing number of grid-based technologies and the
potential orchestration of resources into workflows.

Soaplab is a set of Web Services providing
programmatic access to the command-line tools
available on remote computers. Because such tools,
especially in the scientific environment where Soaplab
was born, usually analyze data, Soaplab is often
referred to as an Analysis (Web) Service. The
important point is that Soaplab services are defined by
an API that is the same for all analysis tools,
disregarding the operating system where they run, the
manner in which they consume and produce data (e.g.
from/to files or from/to standard streams), and the
precise syntax of the underlying command line tool.

Considering the Soaplab Web Service as a Sesame
door to the treasures, what are the keys opening the
lock? The answers are in metadata, API and a
distributed architecture.

Soaplab metadata
A universal API, as described later, is able to cover all
possible command-line tools because Soaplab uses
metadata in order to describe individual tools in detail.
It is a trade-off allowing a stable API and relatively
easy extensibility at the same time. Metadata
themselves are extensible (so they can be used not only

for clients but also some implementation may choose
to use them to store server-side details there) but the
most important facts that are available always include:

• description, type, and provider of the given
analysis tool,

• names and types of the input data and

command-line parameters,

• names and types of the resulting output data.

Metadata are crucial and service providers (those who
want to make their analysis tools available as a Web
Service) need to create them for every individual
application; for this reason the format of metadata is
important. Soaplab stores metadata in XML files - see
later about their specification - which is fine for
programs but much harder for humans. An example of
such XML would be too long to fit into this paper - see
it, therefore, online1.

The service provider needs much easier way. A
favourite candidate is the format used by EMBOSS -
so called ACD files. It uses simple and forgiving
syntax, and - importantly - the EMBOSS 100+
programs are already distributed with their descriptions
in this format. Soaplab includes a converter that reads
the ACD files and creates the XML file from them. On
top of that, the ACD syntax is extensible - it allows a
provider to add additional options that are ignored by
the official EMBOSS parsers but can be used by the
Soaplab generator. The figure 1 shows an ACD file for
an EMBOSS seqret2 program, and the figure 2 shows
an ACD file for a mythical application HelloWorld
(returning just a given greeting).

Soaplab has also additional converters capable of
reading other formats and converting them into the
unified XML format. Currently absent is a decent
graphical editor to create this metadata.

If the metadata are the magic Sesame formula then the
Soaplab API is a real key to the Sesame door.

Soaplab API in a nutshell
The main Soaplab API, addressing the individual
analysis, allows the client:

• To determine the analysis type, category and
all its metadata.

• To send input data and parameters to the

analysis.

1 http://industry.ebi.ac.uk/soaplab/copies/blastn_ncbi_al.xml
2 http://www.hgmp.mrc.ac.uk/Software/EMBOSS/Apps/seqret.html

• To run the analysis - both synchronously (by
blocking the request until the analysis
finishes) or asynchronously (by creating a
session identifier that can be later used by
polling the server for the status and results).

• To retrieve current analysis status, including

various notification messages (if
implemented).

• To retrieve data results.

Figure 3 shows the main API methods (for sake of
readability, it is expressed as Java methods but in
reality a WSDL is used instead3, Soaplab being a
normal Web service).

For feeding data into the analysis and for retrieving
results from it the API uses named parameters. The
known and allowed names are available from the
analysis metadata. The supported types of the
input/output data are strings, binary data and arrays of
both. Other types can be added by an almost plug-and-
play mechanism.

Sometimes it may be more appealing to have a
stronger typed API. Such API would not be universal -
it would express very specifically methods and data
types available only for the given analysis. Soaplab
provides it as well: an analysis-specific API can be
generated from metadata. This means that any analysis
is available (if the service provider decides so) using
both a universal API and a strongly typed API (called
an API for derived services). Figure 3 shows part of
such API for the EMBOSS seqret program.

Soaplab provides also a registry-like Web Service that
can list all available analysis (from a given server) in a
shallow hierarchy. Obviously, this task should be
delegated to a proper registry service wherever
possible; the functionality is included in Soaplab for
the cases where the service provider does not require
the more sophisticated facilities of a full registry
service such as UDDI. The API of this ill-named
service is also in figure 3.

Soaplab architecture
The API and, to certain extend, metadata, are the only
things important for the end-users. But for the service
providers it is worth to look very briefly into the
overall architecture. The figure 4 shows details:

• The part that takes the most effort is to create
metadata. These metadata are converted into
an XML file and used by the services.

3 An example:
http://industry.ebi.ac.uk/soaplab/wsdl/edit__seqret.wsdl

• The main block contains the implementation
details that can change anytime. The current
Soaplab server is based on an internal
CORBA-based AppLab (2) server and a
Tomcat servlet engine (using Apache Axis
Soap toolkit). A less dependency-rich solution
is in the pipeline. Note that Soaplab can
optionally use a local database for keeping
results long after the analysis finished and/or
the current client sessions expired; in the
absence of this component the local file
system is used.

• Thanks to a unified API and the nature of

Web Services there can be a range of various
clients written in different languages to access
the analysis tools remotely. Few of them are
distributed with the Soaplab but the more
important are those adding values - such as
Talisman (3) – a generator of web-based
interfaces, or the Taverna project's workbench
(4) - a workflow environment. Also some
widely used open source initiatives in
bioinformatics, such as Bioperl, have their
own clients talking to Soaplab-based services
already.

Because of having all information defined in metadata,
Soaplab is in a very good position to generate many
useful things. We have already mentioned generated
derived services (Java source code files) with a strong-
typed API, and the converters for generating XML
metadata files from other formats. Additionally,
Soaplab can automatically generate
Java source code files that are able to register some or
all Soaplab services by a UDDI registry (using the
UDDI4J API), or by BioMoby (5) registry (a work still
in progress).

Standards involved
Soaplab services can be considered building blocks
(see myGrid (6) and Taverna project, for example) - and
as such they will be more useful the more accepted and
open standards they are built on.

The Soaplab API is very similar to the analysis engine
interface as defined in the "Biomolecular Sequence
Analysis" specification (7) adopted by the Life
Sciences Task Force of OMG4. The only changes
reflect the fact that the original interface was designed
purely for CORBA and not for Web services. The
same standard defines also the contents of
metadata - but only the basics. It allows, however,
extension of the metadata in a standard way - which is
what Soaplab does.

4 http://lsr.omg.org

Having experience with both the API and the metadata,
we have initiated a request for a proposal to adopt
more middleware-neutral standards. The new
specification5 is expected at the end of 2003 with the
Soaplab to be its prototype.

Conclusion
Having opened the Sesame door, what can be said
about the treasures behind? The life science domains
are full of cleverly written algorithms and
computational methods, very often presented in badly-
written scripts with non existent or limited user
interfaces that are sometimes difficult to combine
together. Soaplab offers a unified way to access such
pearls and provides a basis for integration tools such as
Taverna.

An available test bed providing more than one hundred
EMBOSS applications is running and accessible at EBI
as an experimental service6. The whole project was
born thanks to the myGrid project (full
acknowledgement in 6), and hopes to evolve further as
and when new requirements arise.

5 http://www.omg.org/cgi-bin/doc?lifesci/2003-01-08
6 Web Service’s endpoint: http://industry.ebi.ac.uk/soap/soaplab

Figures

Figure 2: ACD file for a non-EMBOSS program

appl: seqret [
 documentation: "Reads and writes (returns) sequences"
 groups: "Edit"
]
section: input [info: "input Section" type: page]
bool: feature [
 information: "Use feature information"
]
seqall: sequence [
 parameter: "Y"
 features: "$(feature)"
]
endsection: input
section: advanced [info: "advanced Section" type: page]
bool: firstonly [
 information: "Read one sequence and stop"
]
endsection: advanced
section: output [info: "output Section" type: page]
seqoutall: outseq [
 parameter: "Y"
 features: "$(feature)"
]
endsection: output

appl: HelloWorld [
 documentation: "Classic greeting
from the beginning of the UNIX epoch"
 groups: "Classic"
 comment: "non-emboss"
 comment: "exe echo"
]

string: greeting [
 optional: "Y"
 parameter: "Y"
 default: "Hello World"
 comment: "defaults"
]

outfile: output [
 optional: "Y"
 default: "stdout"
]

Figure 1: ACD file for an EMBOSS application “seqret”

Figure 3: Soaplab general API. In the right lower corner
there is also a generated strongly-typed API for a particular
analysis

References
1 Rice,P. Longden,I. and Bleasby,A.

"EMBOSS: The European Molecular Biology Open Software Suite"
Trends in Genetics June 2000, vol 16, No 6. pp.276-277

2 Senger,M.
“AppLab - A CORBA-Java based Application Wrapper”
CCP11 Newsletter Issue 8 - 15 June 1999,
http://www.hgmp.mrc.ac.uk/CCP11/CCP11newsletters/CCP11NewsletterIssue8.pdf

3 Oinn,T.
http://sourceforge.net/projects/jtalisman/

4 Oinn,T.
http://sourceforge.net/projects/taverna

5 Wilkinson,MD., Links,M. (2002)
“BioMOBY: an open-source biological web services proposal”
Briefings In Bioinformatics (2002) 3:4. 331-341.

6 Goble, C.A., Wroe, C.J., Stevens, R. and the myGrid consortium
“The myGrid project: services, architecture and demonstrator”
Proceedings UK OST e-Science 2nd All Hands Meeting 2003, Nottingham, UK 2-4 Sept, 2003

7 “Biomolecular Sequence Analysis”
http://www.omg.org/cgi-bin/doc?dtc/00-11-01

Figure 4: Soaplab Architecture. The main box in the middle
represents a “not-so-important” current implementation
which may later change without visible impacts on clients.

