
Extending the Grid to Support Remote Medical Monitoring
Carl Barratt5, Andrea Brogni8, Matthew Chalmers2, William R. Cobern6, John Crowe5, Don Cruickshank7,

Nigel Davies3, Dave De Roure7, Adrian Friday3, Alastair Hampshire4, Oliver J. Gibson6, Chris Greenhalgh4,
Barrie Hayes-Gill5, Jan Humble4, Henk Muller1, Ben Palethorpe5, Tom Rodden4, Chris Setchell1,

Mark Sumner5, Oliver Storz3 and Lionel Tarassenko6

1Department of Computer

Science, University of Bristol
2Computing Science,

University of Glasgow
3Computing Department,

Lancaster University
4School of Computer Science

& IT, University of
Nottingham

5School of Electrical and
Electronic Engineering,

University of Nottingham

6Department of Engineering
Science, University of Oxford

7Department of Electronics
and Computer Science,

University of Southampton

8Department of Computer
Science, University College

London

Abstract. In this paper we show how we have used and adapted GT3 to support scalable and flexible remote
medical monitoring applications on the Grid. We use two lightweight monitoring devices (a java phone and a
wearable computer), which monitor blood glucose levels and ECG/SpO2 activity. We have connected those
devices to the Grid by means of proxies, allowing those devices to be intermittently connected. The data from
the devices is collected in a database on the Grid, and practitioners can obtain real time data or observe the
patients historical data.

- Making remote data available to the Grid in
order that a wider scientific community can
access scientific data as quickly as possible
often using varying quality communication
services.

Introduction
The emergence of e-science and initiatives such as
the UK e-science programme has been driven from
the initial suggestion of “the Grid” as a distributed
computing infrastructure for advanced science [1].
We have already seen considerable progress on the
construction of such an infrastructure with software
facilities such as the Globus Toolkit [2] becoming
freely available based on the premise that high
bandwidth communication allows storage and
computational resources to be shared by a range of
scientists accessing these services from their labs.
Initiatives surrounding the GGF [3] such as OGSA
[4] and work on the semantic grid [5] and OGSA-
DAI [6] outline a clear position where powerful
computational services and very large amounts of
data are readily available to a distributed community
of scholars.

- Making Grid facilities available to remote
users when these need to be delivered across
lower bandwidth communication using devices
with significant display and processor
limitations.

Our particular interest is in solving the core
technological problems involved in extending the
grid by exploring these challenges within the
medical domain. The need to make Grid facilities
available “in the field” is particularly critical in the
case of medical services where much of the day to
day work of medicine centres on the patient
requiring a number of medical professionals to
correlate medical data with patient examination and
observation.

However, not all science takes place within the
research lab and when we consider those areas
where a significant portion of scientific activity
takes place away from the lab a mismatch is evident
between the provision of services enabled by current
grid technology and the needs of the scientist in the
field. Currently, the link between the field scientist
undertaking remote work “on site” and their home
lab is poorly supported and is often a significant
bottleneck in the scientific process.

Grid technology and medical devices
The current trend towards Telemedicine and
Telecare evident in the UK [7] has seen an
explosion in the range of locations where advanced
medical care needs to be delivered. E-medicine
initiatives such as NHSdirect have illustrated the
need to maximise the flexibility of delivery of health
care. The ultimate goal is to increase the availability
of medical care in order to both reduce the demands
on hospital services and to improve the long term
care and recovery of patients.

Within the MIAS/ Equator Medical Devices Project
we wish to address this potential scientific
bottleneck by considering the development of
mobile access to Grid services and how these
services may be connected to a heterogeneous
collection of mobile devices. Mobile access to grid
facilities requires significant research to tack to two
core research challenges.

Existing trials in Telemedicine and Telecare such as
those carried out by the Oxford centre for e-health
[7], the Biomedical Informatics group at
Nottingham University [8] and the Glasgow Royal

Infirmary and Glasgow University [9] have
demonstrated the feasibility of remotely monitoring
patients as part of an overall care programme or as
part of a clinical trial. However, these efforts have
tended to be small scale in nature and have typically
required the development of bespoke sensors and
purpose build infrastructure for the logging of data
for analysis.
In this paper we present our initial work in creating
a medical monitoring infrastructure that exploits
standard grid software suitable for future clinical
trials. The developed infrastructure allows
lightweight medical devices to be made available on
the grid as Grid Services. We have developed two
distinct medical devices based on this infrastructure:
a wearable medical monitoring jacket which
independently delivers medical data to the Grid for
analysis by researchers and clinicians; and a Java
phone based blood glucose device which allows
patients to self report medical information onto the
Grid.
Device 1: The Monitoring Jacket
In developing our first medical device we have used
a standard wearable platform (the Cyberjacket [10]
developed at Bristol), which comes with wireless
connectivity, and augmented it with three purpose
built sensors: an ECG, an Oxygen Saturation
Monitor and a temperature sensor. This augments
the standard sensors on the Cyberjacket for position
sensing (using GPS), and motion sensing (using
accelerometers).
Whereas current state of the art monitoring systems
which typically require purpose built devices or
significant customisation, the Cyberjacket has a
modularised architecture. This means that health
researchers can easily customise a jacket for their
experiment. It also decreases the cost of units, as
they are reusable in different configurations.

Wearable architecture
The wearable system consists of an ADS `bitsy’
processor unit (based on the StrongARM), with a
custom 9-wire bus embedded in the fabric of the
jacket. The bus provides sensors with power,
ground, and communications via three serial links.
Two links run at RS-232 levels, and are for
dedicated RS-232 devices. Any commercially
available device that runs RS-232 (such as a GPS)
can be connected to one of these busses. The third
bus runs at TTL level, at 4800 baud, and is used as a
drop-link bus on which tens of devices (e.g. medical
sensors) can be connected. In addition, the bitsy
offers stereo sound I/O that can be used to give
feedback to the wearer.
The standard sensors can be attached to measure a
range of activities: a compass mounted on a pair of
headphones measures the direction in which the
wearer is looking, and an accelerometer mounted
vertically on the back can detect walking. A typical

configuration of the medical wearable is shown in
figure 1.

Figure 1: A typical configuration of the wearable

Sensor architecture
Typically, information is gathered from multiple
sensor types in order to more accurately track and
diagnose a given disease state or improve the data
fed into clinical trials. The combination of electro-
physiological and other medical parameters that
must be monitored will vary for a specific medical
condition. Consequently we have designed modular
sensors units that can be easily added or removed to
facilitate customisation for a particular trial. At the
time of writing, the sensor modules include:
− Blood oxygen saturation (SpO2) derives the

level of oxygen present in arterial blood by
calculating the ratio of light absorption resulting
from oxygenation and reduced haemoglobin
through a well-perfused body part (the finger).

− 3 Point Electrocardiogram (ECG) monitors
the signal produced on the surface of the skin
by the electrical activity of the heart.

− Skin and ambient temperature are monitored
using clinical grade thermistors.

Each sensor uses analogue techniques to obtain,
non-invasively, signals that impart rich medical
information about the patient. The signals are
conditioned, sampled and processed prior to
assembly into packets of digitised data. All sensors
conform to a similar packet format, which includes a
header (depicting the origin of the packet and the
type of data included within it), the data itself and
some indication of the validity of the data.

Figure 2: The wearable bus protocol

The packets of data generated by a particular sensor
can be time-division multiplexed with that of other
sensors, or allocated to a dedicated channel
depending on the quantity of data produced (see
figure 2), e.g. output from the ECG sensor is in

standard RS232 serial format in packets that begin
with ASCII sequence $SE0 (where S = streaming, E
= ECG, 0 = minor sensor number) and carry a
payload of 100 bytes, transmitted at 19,200 baud.

Device 2: Blood Glucose Monitoring
We have complemented our work with continuous
unobtrusive monitoring by exploring medical
devices that rely on self-reporting. We have adapted
a system for the monitoring and self-management of
Type 1 diabetes to utilise Grid services. The original
system was developed in collaboration between
Oxford University and e-San Ltd, a mobile
healthcare company. The system is built on clinical
experience and has evolved based on feedback from
both clinicians and patients. A Grid-based version of
the system, as demonstrated by this project, offers a
possible solution to scaling up the data collection
and patient advice in a generic way.
Type 1 diabetes mellitus involves the destruction of
beta cells in the pancreas, preventing the body from
producing insulin. Without treatment, blood glucose
levels will be abnormally high, causing long-term
complications such as damage to eyes and nerves.
The standard treatment for Type 1 diabetes involves
injections of long-acting insulin at bedtime and extra
short-acting doses to counteract the effects of each
meal during the day. This treatment has been shown
to delay and reduce complications, but brings a risk
of hypoglycaemia (low blood glucose levels) if
insulin doses are too high. Patients must therefore
adjust their insulin doses carefully, based on
measurements of their current blood glucose levels
and taking into account the meals they are about to
eat and/or any exercise they intend to do.
In conventional treatment, patients attend a three-
monthly clinic to discuss any problems or alterations
in treatment with a diabetes specialist clinician.
Patients may write down their blood glucose
measurements, insulin doses and other information
in a paper diary. However, important trends in the
data (such as dangerous overnight hypoglycaemia)
will not be seen by the clinician for up to three
months. The diary itself may not be accurate; since
some patients may “adjust” the blood glucose levels
they enter in order to appear to have better control.
The e-San system uses an off-the-shelf GPRS
(General Packet Radio Service) mobile phone to
improve communication between the patient and
clinicians. A popular blood glucose meter (the
Lifescan SureStep) can be connected to the phone
via a specially-built interface cable. When the
patient takes a blood glucose reading, it is
transferred via the cable to the phone, which
immediately sends it to a central server using a
GPRS connection. Custom software on the phone
prompts the patient to answer a short series of
questions about the insulin dose they are about to
inject and relevant lifestyle information (diet,
exercise, minor illnesses, etc.) The process of

gathering this data has been made as rapid as
possible for the patient and the system is highly
portable: many younger patients already carry a
mobile phone and are familiar with the technology.
The stored patient data on the server can be viewed
both by the clinicians and that particular patient by
accessing a secure web page. When required, the
clinicians can rapidly contact patients using text
messages or voice calls to their phones.

Figure 3: Diabetes self-management system:
mobile phone, blood glucose meter and cable

Figure 4: Sample lifestyle questions

The system is currently being used in a 100-patient
trial involving young adults with Type 1 diabetes.
Feedback from patients and clinicians has
influenced the Grid demonstrator version of the
system. The principal motivation for developing a
Grid version of the phone system is to address the
technical challenges of a future scale-up of the
system on a national basis. In particular, distributed
storage and processing of the data will be required
since a single server is not sufficient to handle the
data from all Type 1 diabetes patients in the UK
(approximately 100,000). It would also be
advantageous for a team of diabetes experts to be
continuously available to review the data (operating
across multiple time zones would allow 24-hour
coverage to be achieved with all clinicians still
working during normal office hours.) In this
application the Grid offers a possible future-proof
and generic solution to the scalability problems.
In the following section we consider the
development of the underlying architecture used to
support these different classes of medical device and
the extensions we have made to the Globus Toolkit

to allow this form of device to make itself available
across the grid. The infrastructure we have used has

also been exploited to undertake remote monitoring
via the Grid [11].

JavaPhone Blood sugar
meter

Data logger PAR sensor

PAR sensor

Other sensors

Cyberjacket
(Bitsy)

ECG sensor

accelerometer

GPS receiver

9-wire bus
(pluggable)

JavaPhone proxy

Blood sugar
meter proxy

Data logger
proxy

PAR sensor
proxy

Other sensor
proxy

Cyberjacket
proxy

ECG sensor
proxy

Other sensor
proxy

Generic device proxy
factory(s)

GPRS

Iridium

802.11

Multicast
beacon

DF

D

D

D

S

S

S

S

S

Device Proxy
Management Client

Register new
device New device

configuration

Sensor
data-pump

RDBMS

Sensor
Database
Service

Sensor
data-pump

Sensor
data-pump

Trial
manager

Add sensor to
trial database

S/w module

Live monitoring display

Sensor and
device status

display

GPS live map

‘elipse of
normality’

visualisation

Scrolling
sensor charts

S

Data
chooser/
fetcher

Table views

Graph views

Dataflow user interface

DF

D

S

New GRID Port Types:

DeviceProxyFactory

Device

Sensor

Figure 5: The Equator MIAS devices Grid deployment

Putting Devices and Sensors on the Grid
The devices and sensors comprising our medical
devices have considerably less power than those
normally expected to be placed on the Grid. They
have limited computation power, little memory and
low bandwidth, intermittent network connectivity.
Such devices are not directly suitable for hosting
Grid Services given current technologies. However,
we envision certain high-end devices or devices in
the near future will be capable of doing so.
Consequently, our approach has been, wherever
possible, to make such devices and sensors available
as if they were first class Grid Services. We have
defined two new application-independent port types:
one for a generic sensor, and one for a generic
device (which is assumed to host a number of
sensors). These port types can be supported directly
by sensors and devices of sufficient capability and
reliability of communication. However, all of the
devices and sensors that we are working with at the
moment depend on proxy Grid Services to
implement these interfaces on their behalf. The
devices communicate with their respective proxies
using whatever protocol is appropriate, as and when
communication channels are available.
To realise this approach, we have also defined a
Generic Device Proxy Factory port type, which can
be implemented by factory services able to create
device and sensor proxies. We have initially created
proxies for the two devices described in this paper
and the EQUATOR IRC environment e-Science
project’s Antarctic lake monitoring device [11].
Of these, the heart monitoring device is the most
sophisticated, supporting dynamic addition and
removal of sensors as well as the execution of
custom software modules on the device itself, e.g. to

support on-device monitoring of critical health
indicators. Note, even this device cannot support a
standard Grid Service interface, since its wearer will
often move outside of wireless network range as
they go about their everyday activities. In terms of a
fixed Grid this would represent a failure of the
service (or the Grid fabric). In the context of mobile
and remote devices it is a perfectly normal part of
operation and should not appear as a failure – the
wearable device’s Grid Service proxy (on the fixed
network) maintains availability based on cached
historical data and queues requests for
reconfiguration even when the device itself is
currently unreachable.

Data Archival
In many applications in health informatics the data
from sensors and devices will normally be archived
to a persistent store of some form, from which the
user (e.g. the clinician or informatician) will request
data as and when they require it, e.g. when
reviewing a particular case, or testing a new feature
detection algorithm.
The second part of our system assumes that devices
and sensors are exposed as Grid Services using the
port types already mentioned; it then allows the data
from these sensors to be archived in a timely fashion
to an archival database.
We have designed a custom Grid Service port type
for this database, to tailor it to the kinds of data
being stored and queries being performed. In the
first version this is implemented directly over a
Relational DataBase Management System using
JDBC; this will migrate to use OGSA-DAI in the
next version, in order to provide a generic Grid
interface to the data archive.

Data analysis and visualisation
There are two distinct elements of data analysis and
visualisation within our current approach:
– Live sensor and device monitoring; and
– Analysis and visualisation of archived data.
The live monitoring component makes direct use of
the defined sensor and device Grid Service port
types to provide real-time status information. This is
appropriate for interactive use, demonstration,
trouble-shooting and configuration.
Working with archived data uses the data archive
service rather that the sensors and devices
themselves, and is more appropriate for routine
(occasional) monitoring and longer-term analysis.
To support this activity we are developing a simple
visual dataflow tool to allow non-programmers to
get data from the archive and to view it in various
ways. These elements are shown together on the
deployment diagram shown in figure 5.
New port types
This section describes the port types that we have
defined. We have sought to keep as close as possible
to the design idioms of OGSA – as distinct from
other distributed object systems such as CORBA or
Java RMI – and it may be that others will find these
examples illustrative in this respect.

Sensor port type
The sensor port type is in some ways is the most
fundamental for the kinds of systems being
considered. Each sensor port corresponds to exactly
one sensor, which is characterised as:
– some self-describing metadata, e.g. what kind

of sensor it is,

– its configuration, e.g. its sampling rate, and
– zero or more data samples (of whatever

phenomenon it senses).
As far as Grid applications are concerned we
consider the sensor service’s Grid Service Handle
(GSH) to be the globally unique identity of the
sensor (although it typically also exposes other
forms of identification that are not specific to the
Grid). We expect a sensor Grid service to be
persistent, as long as the sensor exists ‘on the Grid’.
Clearly, this does not prevent the sensor service
migrating between hosts or being activated and
deactivated by its run-time support environment.
In OGSA, a service exposes information about itself
or its internal state using Service Data Elements
(SDEs) that can be queried and modified using
standard operations in the common Grid Service
port type. SDEs, analogous to properties in
JavaBeans, support a standard introspection
mechanism (again as SDEs) that is used by the
standard Java-based service browser GUI provided
with GT3, allowing a user to browse the service data
of arbitrary Grid services.
Port types can also extend (multiple) existing port
types, if they also wish to support those interfaces.
In our case, the sensor port type extends the
following standard OGSI port types:
– GridService: required by all Grid services to

provide standard access to lifecycle operations
and service data, and

– NotificationSource: allowing clients to listen
asynchronously for changes to the service data.

and defines the service data elements shown in the
following tables:

Table 1:Sensor port type: self-description
Name # Mutability Modify? Description
IdentifiedAs 1 Constant False Sensor ID, names and type
Description 1 Mutable False Expanded description, e.g. placement, accuracy, etc.
MeasurementTemplate 1 Constant False The format in which measurements are reported
MeasurementDiscard-
PolicyExtensibility

1..* Constant False Acceptable XML schema types for the
measurementDiscardPolicy SDE

MeasurementPublication-
PolicyExtensibility

1..* Constant False Acceptable XML Schema types for the
measurementPublishingPolicy SDE

ConfigurationExtensibility 1..* Constant False Acceptable XML Schema types for sensor configuration SDE
ProxyStatus 1 Mutable False Current status, e.g. in contact with proxy or disconnected

Notes:
– The various …Extensibility SDEs are analogous to OGSI’s GridService

findServiceDataExtensibility SDE, and give the names of XML schema types that are
understood by a particular Grid Service instance when used in the corresponding SDE (of XML schema type
ogsi:ExtensibilityType, which is just a wrapper for XML Shema’s any).

– We are evaluating SensorML [12] as a possible standard XML schema for sensor self-description; in the
mean time we are using a simple placeholder type.

– The measurementTemplate value allows a potential client to assess the kind of data that will be
returned from a sensor even if it has not yet made any measurements. (It is also used internally in configuring
the Sensor proxy in our current implementation.)

Table 2:Sensor port type: Externally modifiable configuration
Name # Mutability Modify? Description
MeasurementDiscard-
Policy

1 Mutable True The conditions under which the sensor should discard
historical measurements

MeasurementPublishing-
Policy

1 Mutable True The conditions under which the sensor (proxy) should make
a new measurement public

configuration 0..* Mutable True Sensor-specific configuration information, e.g. sample rate

Notes:
– We do not expect or require that a sensor should retain its readings indefinitely. The

measurementDiscardPolicy allows the conditions under which the sensor and/or the proxy discard
old readings to be managed. A simple example would be to retain no more than some number of historical
readings.

– Different kinds of sensors may take measurements at widely varying rates, and each measurement may
represent differing quantities of data. The measurementPublishingPolicy allows the way in which
the sensor reveals (publishes) new measurements to be controlled. For example, a very rapidly sampling
sensor might be configured to announce new measurements no more than 5 times per second (even if it is
taking and making available 5000 measurements during this period).

Table 3: Sensor port type: measurement
Name # Mutability Modify? Description
Measurement 1 Mutable False The most recent measurement made by the sensor
MeasurementCounter 1 Mutable False A running counter of measurements made
MeasurementHistory 1 Mutable False The complete known history of measurements

Notes:
– The measurement SDE nominally exposes the most recently made measurement. However the

measurementPublishingPolicy may mean that some measurements are not actually ‘published’ as a
distinct value of this SDE.

– The measurementCounter SDE exposes a running total (monotonically increasing) of the measurements
performed by the sensor. Because the measurementPublishingPolicy may limit the measurements
exposed directly through the measurement SDE, a client that requires all measurements should monitor
this counter, and obtain any newly available measurements via a query to the measurementHistory
SDE (below).

– The measurementHistory SDE exposes the sensor’s full (retained) history of measurements.
Depending on the measurementDiscardPolicy this may be quite a limited subset of measurements
made, e.g. the last few measurements. We also define a new GridService::findSequenceData
query expression type, queryByServiceDataNameAndCount, which (unlike the normal
queryByServiceDataNames query expression type) allows a client to request only a subset of the
available measurement history by providing a measurement counter range of interest. Following standard
OGSA idiom, a query expression of the appropriate type is passed to the
GridService::findSequenceData operation and the service responds accordingly.

Sensor Measurement Types
We have defined measurement,
measurementHistory and
measurementTemplate SDEs to have type
ogsi:ExtensibilityType, i.e. any.
However, we have also had to choose a default
XML schema type for use in the services that we
have developed and deployed. We have adopted
XSIL, the eXtensible Scientific Interchange
Language [13] as a standard XML format for
exchanging sensor measurement data. In
particular, XSIL defines a simple XML
representation of a table of data, with self-defined
column names, types and units, each row of

which can then represent a single measurement (see
sample below):
<XSIL>

 <Comment>Temp at depth of 3m</Comment>

 <Param Name="sensorHandle" Value="…handle…"/>

 <Table>

 <Column Name="dateTime" Type="datetime"/>

 <Column Name="counter" Type="int"/>

 <Column Name="reading" Type="float"
Unit="C"/>

 <Stream Delimiter=",">2003-07-07
10:11:12.000000, 123, 1.124,

 2003-07-07 10:11:17.000000, 124,
1.126</Stream>

 </Table>

</XSIL>

Notes:
– We have adopted the standard ISO-8601

date-time format, and extended XSIL to
support this as a first-class column type
(“datetime”).

– The “counter” column corresponds to the
measurementCounter SDE’s value.

– In some cases (e.g. from the archival
database) the sensor’s Grid Service handle
may appear as an explicit column in the table
(if the table may include data from multiple
sensors).

– A multi-dimensional sensor, such as a two-
axis accelerometer, would have one column
for each dimension of measurement (e.g. “X”
and “Y” rather than just “reading”).

Actuator Port Type
We plan to design a corresponding actuator port
type to allow notifications to propagate from the
Grid back to sensing devices (e.g. the wearable).
Our current focus has been on developing sensing
from lightweight devices, however.

Device Port Type
The Device port type is somewhat simpler than
the sensor port type. We regard a device as being
a supporting or hosting hardware/software
platform for zero or more sensors. We assume
that each device is characterised by:
– some self-describing metadata, e.g. what kind

of device it is, and
– zero or more references to the sensors that it

hosts.
As with sensors, we consider the device service’s
Grid Service Handle (GSH) to be the globally
unique identity of the device as far as Grid
applications are concerned, and we expect a

device Grid service to be persistent, as long as the
device exists ‘on the Grid’.
The device port type extends the following standard
OGSI port types:
– GridService: required by all Grid services to

provide standard access to lifecycle operations
and service data, and

– NotificationSource: allowing clients to listen
asynchronously for changes to service data.

– ServiceGroup: exposing the device’s sensors in
terms of their sensor Grid services.

Exposing of its sensors through the ServiceGroup port
type is the main function of the device service. A
ServiceGroup supports notification by default, so a
client of the device Grid service can receive
notifications of sensor addition and removal.
The device port type also defines the following
additional service data elements (table 4). These mirror
the corresponding SDEs in the sensor port type.

Generic Device Proxy Factory Port Type
The generic device proxy factory is specific to our
proxy-based implementation of device and sensor
proxies: a Grid service directly hosted by a sensor or
device would have no need of such a port type. We
include it here for completeness.
The device proxy factory port type is very simple and
extends the following standard OGSI port types:
– GridService: required by all Grid services, to

provide standard access to lifecycle operations
and service data, and

– NotificationSource: to allow clients to listen
asynchronously for changes to service data.

– ServiceGroup: exposing the device proxies that it
has created, and used for device discovery.

Factory: allowing clients to request the creation of new
device proxy service instances.

Table 4: Device port type: self-description
Name # Mutability Modify? Description
IdentifiedAs 1 Constant False Device ID, names and type
Description 1 Mutable False Expanded description, e.g. including placement,

accuracy, etc.
ProxyStatus 1 Mutable False Current status of sensor, e.g. in contact with proxy or

disconnected

It defines one piece of static (port type) service data,
which is a value for the
ogsi:createServiceExtensibility
SDE, identifying the specific XML schema type
required as the creation parameter to
Factory::createService. We have also
added an additional operation, the Device port type
getCreationInfo, allowing a client to obtain
instance-specific information from newly created
device proxy services. This is a work-around for
Factory::createService not returning the
ExtensibilityOutput in GT3 release 1.0 (and
is an otherwise standard OGSI notification factory).

The particular XML schema required by the generic
device proxy factory allows the requesting client to
override the normal service deployment properties,
e.g. instantiating the correct GridServiceBase
sub-class appropriate to the device that they are
connected to the Grid. The client can also specify an
initial set of sensor proxies to be created, as well as
provide custom configuration information specific
to their device and/or sensor proxies.
At present we provide a simple command-line client
to request the creation of a new device proxy.
However, some devices (such as the wearable)
would be capable of directly requesting the creation

of the Grid proxy, although this would raise
additional security considerations.

Database port type
We have defined a custom port type for our sensor
data archive, so that most clients can work in terms
of domain-specific types (such as XSIL
measurement records), rather than having to use a
generic database interface and types. Internally, the
database service maps to these generic operations.
The database port type is a standard operation-based
interface, comparable to a CORBA or RMI
interface. It supports addition and querying of:
Devices; Sensor types; Sensors; Sensor self-
descriptions; and Sensor measurements.
The user interfaces

Figure 6: An initial standard interface

The approach we have adopted allows the clinician
exploiting the grid infrastructure to view the world
as a series of Grid services providing a set of live
clinical data. The clinician can view this data and
manipulate it using standard data manipulation
services. The clinician experience of these devices
viewed from the grid is of a set of abstract data
services. This data can then be presented using
standard grid and web based facilities. Figure 6 is a
screenshot of one of our early monitoring interfaces
displaying the information arriving from the Grid
services associated with the wearable device. We are
in the process of refining these interfaces for use by
clinicians by undertaking consultation with our
clinical partners to establish their requirements.
Summary
In this paper we have provided an overview of our
work to date on extending the Globus Grid Toolkit
(GT3) to support lightweight mobile devices
suitable from medical monitoring. We have
presented an overview of the devices we have
developed and the highly extensible underlying
architecture and services deployed to connect these
devices to the Grid. While we hope our approach
can act as a blueprint for others seeking to conduct

clinical trials on the Grid, before such architecture
can be used in real clinical trials a number of
significant challenges remain. Of these, a principle
issue for future consideration is how we may
provide appropriate security and address the privacy
demands of this class of application.
Acknowledgements
We would like to acknowledge the EPSRC in
supporting our work in the Equator GR/N15986 and
Grid based Medical Devices for Everyday Health:
GR/R85877 projects.
References
1. Foster, I. and Kesselman, C. (eds.). The Grid:

Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 1999.

2. The Globus toolkit available from
http://www.ggf.org/ogsa-wg/

3. The Global Grid Forum
http://www.gridforum.org/

4. The Open Grid Services Architecture (OGSA)
http://www.globus.org/ogsa/

5. de Roure, D., Jennings, N., Shadbolt, N
“Research Agenda for the Semantic Grid: A
future e-Science infrastructure”
http://dcs.gla.ac.uk/Nesc/general/technical_pape
rs/DavidDeRoure.etal.SemanticGrid.pdf

6. Open Grid Services Architecture Database
Access and Integration (OGSA-DAI),
http://dcs.gla.ac.uk/NeSC/general/projects/OGS
A_DAI/

7. The oxford centre for e-health
http://www.medicine.ox.ac.uk/ndog/tmr/

8. The Biomedical Informatics Group at
Nottigham University
http://www.eee.nott.ac.uk/medical/

9. Computer Assisted Reporting of
Electrocardiograms, Glasgow University
http://www.gla.ac.uk/departments/medicalcardi
ology/research/care.html

10. Muller, H. and C. Randell, “An Event-Driven
Sensor Architecture for Low Power
Wearables”, ICSE 2000, Workshop on Software
Engineering for Wearable and Pervasive
Computing, pp. 39-41, June, 2000.

11. Greenhalgh et al., eScience from the Antartic to
the Grid. To appear proceedings of the 2nd UK
eScience All hands meeting.

12. SensorML Specification,
http://vast.uah.edu/SensorML/

13. XSIL Specification,
http://www.cacr.caltech.edu/projects/xsil

http://www.ggf.org/ogsa-wg/
http://www.gridforum.org/
http://www.globus.org/ogsa
http://dcs.gla.ac.uk/Nesc/general/technical_papers/DavidDeRoure.etal.SemanticGrid.pdf
http://dcs.gla.ac.uk/Nesc/general/technical_papers/DavidDeRoure.etal.SemanticGrid.pdf
http://dcs.gla.ac.uk/NeSC/general/projects/OGSA_DAI/
http://dcs.gla.ac.uk/NeSC/general/projects/OGSA_DAI/
http://www.medicine.ox.ac.uk/ndog/tmr/
http://www.eee.nott.ac.uk/medical/
http://www.gla.ac.uk/departments/medicalcardiology/research/care.html
http://www.gla.ac.uk/departments/medicalcardiology/research/care.html
http://vast.uah.edu/SensorML/
http://www.cacr.caltech.edu/projects/xsil

	Extending the Grid to Support Remote Medical Monitoring
	Introduction
	Grid technology and medical devices
	Device 1: The Monitoring Jacket
	
	Wearable architecture
	Sensor architecture

	Device 2: Blood Glucose Monitoring

	Putting Devices and Sensors on the Grid
	Data Archival
	Data analysis and visualisation

	New port types
	Sensor port type
	Table 1:Sensor port type: self-description
	Table 2:Sensor port type: Externally modifiable configuration
	Table 3: Sensor port type: measurement

	Sensor Measurement Types
	Actuator Port Type
	Device Port Type
	Generic Device Proxy Factory Port Type
	Table 4: Device port type: self-description

	Database port type

	The user interfaces
	
	
	Figure 6: An initial standard interface

	Summary
	Acknowledgements
	References

