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Abstract. In this paper we show how we have used and adapted GT3 to support scalable and flexible remote 
medical monitoring applications on the Grid. We use two lightweight monitoring devices (a java phone and a 
wearable computer), which monitor blood glucose levels and ECG/SpO2 activity. We have connected those 
devices to the Grid by means of proxies, allowing those devices to be intermittently connected. The data from 
the devices is collected in a database on the Grid, and practitioners can obtain real time data or observe the 
patients historical data. 
 

- Making remote data available to the Grid in 
order that a wider scientific community can 
access scientific data as quickly as possible 
often using varying quality communication 
services.  

Introduction  
The emergence of e-science and initiatives such as 
the UK e-science programme has been driven from 
the initial suggestion of “the Grid” as a distributed 
computing infrastructure for advanced science [1]. 
We have already seen considerable progress on the 
construction of such an infrastructure with software 
facilities such as the Globus Toolkit [2] becoming 
freely available based on the premise that high 
bandwidth communication allows storage and 
computational resources to be shared by a range of 
scientists accessing these services from their labs. 
Initiatives surrounding the GGF [3] such as OGSA 
[4] and work on the semantic grid [5] and OGSA-
DAI [6] outline a clear position where powerful 
computational services and very large amounts of 
data are readily available to a distributed community 
of scholars. 

- Making Grid facilities available to remote 
users when these need to be delivered across 
lower bandwidth communication using devices 
with significant display and processor 
limitations.  

Our particular interest is in solving the core 
technological problems involved in extending the 
grid by exploring these challenges within the 
medical domain. The need to make Grid facilities 
available “in the field” is particularly critical in the 
case of medical services where much of the day to 
day work of medicine centres on the patient 
requiring a number of medical professionals to 
correlate medical data with patient examination and 
observation.  

However, not all science takes place within the 
research lab and when we consider those areas 
where a significant portion of scientific activity 
takes place away from the lab a mismatch is evident 
between the provision of services enabled by current 
grid technology and the needs of the scientist in the 
field. Currently, the link between the field scientist 
undertaking remote work “on site” and their home 
lab is poorly supported and is often a significant 
bottleneck in the scientific process.  

Grid technology and medical devices  
The current trend towards Telemedicine and 
Telecare evident in the UK [7] has seen an 
explosion in the range of locations where advanced 
medical care needs to be delivered. E-medicine 
initiatives such as NHSdirect have illustrated the 
need to maximise the flexibility of delivery of health 
care. The ultimate goal is to increase the availability 
of medical care in order to both reduce the demands 
on hospital services and to improve the long term 
care and recovery of patients.  

Within the MIAS/ Equator Medical Devices Project 
we wish to address this potential scientific 
bottleneck by considering the development of 
mobile access to Grid services and how these 
services may be connected to a heterogeneous 
collection of mobile devices. Mobile access to grid 
facilities requires significant research to tack to two 
core research challenges. 

Existing trials in Telemedicine and Telecare such as 
those carried out by the Oxford centre for e-health 
[7], the Biomedical Informatics group at 
Nottingham University [8] and the Glasgow Royal 

 



Infirmary and Glasgow University [9] have 
demonstrated the feasibility of remotely monitoring 
patients as part of an overall care programme or as 
part of a clinical trial. However, these efforts have 
tended to be small scale in nature and have typically 
required the development of bespoke sensors and 
purpose build infrastructure for the logging of data 
for analysis.  
In this paper we present our initial work in creating 
a medical monitoring infrastructure that exploits 
standard grid software suitable for future clinical 
trials. The developed infrastructure allows 
lightweight medical devices to be made available on 
the grid as Grid Services. We have developed two 
distinct medical devices based on this infrastructure: 
a wearable medical monitoring jacket which 
independently delivers medical data to the Grid for 
analysis by researchers and clinicians; and a Java 
phone based blood glucose device which allows 
patients to self report medical information onto the 
Grid. 
Device 1: The Monitoring Jacket 
In developing our first medical device we have used 
a standard wearable platform (the Cyberjacket [10] 
developed at Bristol), which comes with wireless 
connectivity, and augmented it with three purpose 
built sensors: an ECG, an Oxygen Saturation 
Monitor and a temperature sensor. This augments 
the standard sensors on the Cyberjacket for position 
sensing (using GPS), and motion sensing (using 
accelerometers). 
Whereas current state of the art monitoring systems 
which typically require purpose built devices or 
significant customisation, the Cyberjacket has a 
modularised architecture. This means that health 
researchers can easily customise a jacket for their 
experiment. It also decreases the cost of units, as 
they are reusable in different configurations. 

Wearable architecture 
The wearable system consists of an ADS `bitsy’ 
processor unit (based on the StrongARM), with a 
custom 9-wire bus embedded in the fabric of the 
jacket. The bus provides sensors with power, 
ground, and communications via three serial links. 
Two links run at RS-232 levels, and are for 
dedicated RS-232 devices. Any commercially 
available device that runs RS-232 (such as a GPS) 
can be connected to one of these busses. The third 
bus runs at TTL level, at 4800 baud, and is used as a 
drop-link bus on which tens of devices (e.g. medical 
sensors) can be connected. In addition, the bitsy 
offers stereo sound I/O that can be used to give 
feedback to the wearer. 
The standard sensors can be attached to measure a 
range of activities: a compass mounted on a pair of 
headphones measures the direction in which the 
wearer is looking, and an accelerometer mounted 
vertically on the back can detect walking. A typical 

configuration of the medical wearable is shown in 
figure 1. 

 
Figure 1: A typical configuration of the wearable 

Sensor architecture 
Typically, information is gathered from multiple 
sensor types in order to more accurately track and 
diagnose a given disease state or improve the data 
fed into clinical trials. The combination of electro-
physiological and other medical parameters that 
must be monitored will vary for a specific medical 
condition. Consequently we have designed modular 
sensors units that can be easily added or removed to 
facilitate customisation for a particular trial. At the 
time of writing, the sensor modules include: 
− Blood oxygen saturation (SpO2) derives the 

level of oxygen present in arterial blood by 
calculating the ratio of light absorption resulting 
from oxygenation and reduced haemoglobin 
through a well-perfused body part (the finger). 

− 3 Point Electrocardiogram (ECG) monitors 
the signal produced on the surface of the skin 
by the electrical activity of the heart. 

− Skin and ambient temperature are monitored 
using clinical grade thermistors. 

Each sensor uses analogue techniques to obtain, 
non-invasively, signals that impart rich medical 
information about the patient. The signals are 
conditioned, sampled and processed prior to 
assembly into packets of digitised data. All sensors 
conform to a similar packet format, which includes a 
header (depicting the origin of the packet and the 
type of data included within it), the data itself and 
some indication of the validity of the data. 

 
Figure 2: The wearable bus protocol 

The packets of data generated by a particular sensor 
can be time-division multiplexed with that of other 
sensors, or allocated to a dedicated channel 
depending on the quantity of data produced (see 
figure 2), e.g. output from the ECG sensor is in 

 



standard RS232 serial format in packets that begin 
with ASCII sequence $SE0 (where S = streaming, E 
= ECG, 0 = minor sensor number) and carry a 
payload of 100 bytes, transmitted at 19,200 baud. 

Device 2: Blood Glucose Monitoring  
We have complemented our work with continuous 
unobtrusive monitoring by exploring medical 
devices that rely on self-reporting. We have adapted 
a system for the monitoring and self-management of 
Type 1 diabetes to utilise Grid services. The original 
system was developed in collaboration between 
Oxford University and e-San Ltd, a mobile 
healthcare company. The system is built on clinical 
experience and has evolved based on feedback from 
both clinicians and patients. A Grid-based version of 
the system, as demonstrated by this project, offers a 
possible solution to scaling up the data collection 
and patient advice in a generic way.  
Type 1 diabetes mellitus involves the destruction of 
beta cells in the pancreas, preventing the body from 
producing insulin. Without treatment, blood glucose 
levels will be abnormally high, causing long-term 
complications such as damage to eyes and nerves. 
The standard treatment for Type 1 diabetes involves 
injections of long-acting insulin at bedtime and extra 
short-acting doses to counteract the effects of each 
meal during the day. This treatment has been shown 
to delay and reduce complications, but brings a risk 
of hypoglycaemia (low blood glucose levels) if 
insulin doses are too high. Patients must therefore 
adjust their insulin doses carefully, based on 
measurements of their current blood glucose levels 
and taking into account the meals they are about to 
eat and/or any exercise they intend to do. 
In conventional treatment, patients attend a three-
monthly clinic to discuss any problems or alterations 
in treatment with a diabetes specialist clinician. 
Patients may write down their blood glucose 
measurements, insulin doses and other information 
in a paper diary. However, important trends in the 
data (such as dangerous overnight hypoglycaemia) 
will not be seen by the clinician for up to three 
months. The diary itself may not be accurate; since 
some patients may “adjust” the blood glucose levels 
they enter in order to appear to have better control. 
The e-San system uses an off-the-shelf GPRS 
(General Packet Radio Service) mobile phone to 
improve communication between the patient and 
clinicians. A popular blood glucose meter (the 
Lifescan SureStep) can be connected to the phone 
via a specially-built interface cable. When the 
patient takes a blood glucose reading, it is 
transferred via the cable to the phone, which 
immediately sends it to a central server using a 
GPRS connection. Custom software on the phone 
prompts the patient to answer a short series of 
questions about the insulin dose they are about to 
inject and relevant lifestyle information (diet, 
exercise, minor illnesses, etc.) The process of 

gathering this data has been made as rapid as 
possible for the patient and the system is highly 
portable: many younger patients already carry a 
mobile phone and are familiar with the technology. 
The stored patient data on the server can be viewed 
both by the clinicians and that particular patient by 
accessing a secure web page. When required, the 
clinicians can rapidly contact patients using text 
messages or voice calls to their phones. 

 
Figure 3: Diabetes self-management system: 
mobile phone, blood glucose meter and cable 

 
Figure 4: Sample lifestyle questions 

The system is currently being used in a 100-patient 
trial involving young adults with Type 1 diabetes. 
Feedback from patients and clinicians has 
influenced the Grid demonstrator version of the 
system. The principal motivation for developing a 
Grid version of the phone system is to address the 
technical challenges of a future scale-up of the 
system on a national basis. In particular, distributed 
storage and processing of the data will be required 
since a single server is not sufficient to handle the 
data from all Type 1 diabetes patients in the UK 
(approximately 100,000). It would also be 
advantageous for a team of diabetes experts to be 
continuously available to review the data (operating 
across multiple time zones would allow 24-hour 
coverage to be achieved with all clinicians still 
working during normal office hours.) In this 
application the Grid offers a possible future-proof 
and generic solution to the scalability problems. 
In the following section we consider the 
development of the underlying architecture used to 
support these different classes of medical device and 
the extensions we have made to the Globus Toolkit 

 



to allow this form of device to make itself available 
across the grid. The infrastructure we have used has 

also been exploited to undertake remote monitoring 
via the Grid [11]. 
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Figure 5: The Equator MIAS devices Grid deployment 

Putting Devices and Sensors on the Grid 
The devices and sensors comprising our medical 
devices have considerably less power than those 
normally expected to be placed on the Grid. They 
have limited computation power, little memory and 
low bandwidth, intermittent network connectivity. 
Such devices are not directly suitable for hosting 
Grid Services given current technologies. However, 
we envision certain high-end devices or devices in 
the near future will be capable of doing so. 
Consequently, our approach has been, wherever 
possible, to make such devices and sensors available 
as if they were first class Grid Services. We have 
defined two new application-independent port types: 
one for a generic sensor, and one for a generic 
device (which is assumed to host a number of 
sensors). These port types can be supported directly 
by sensors and devices of sufficient capability and 
reliability of communication. However, all of the 
devices and sensors that we are working with at the 
moment depend on proxy Grid Services to 
implement these interfaces on their behalf. The 
devices communicate with their respective proxies 
using whatever protocol is appropriate, as and when 
communication channels are available. 
To realise this approach, we have also defined a 
Generic Device Proxy Factory port type, which can 
be implemented by factory services able to create 
device and sensor proxies. We have initially created 
proxies for the two devices described in this paper 
and the EQUATOR IRC environment e-Science 
project’s Antarctic lake monitoring device [11]. 
Of these, the heart monitoring device is the most 
sophisticated, supporting dynamic addition and 
removal of sensors as well as the execution of 
custom software modules on the device itself, e.g. to 

support on-device monitoring of critical health 
indicators. Note, even this device cannot support a 
standard Grid Service interface, since its wearer will 
often move outside of wireless network range as 
they go about their everyday activities. In terms of a 
fixed Grid this would represent a failure of the 
service (or the Grid fabric). In the context of mobile 
and remote devices it is a perfectly normal part of 
operation and should not appear as a failure – the 
wearable device’s Grid Service proxy (on the fixed 
network) maintains availability based on cached 
historical data and queues requests for 
reconfiguration even when the device itself is 
currently unreachable. 

Data Archival 
In many applications in health informatics the data 
from sensors and devices will normally be archived 
to a persistent store of some form, from which the 
user (e.g. the clinician or informatician) will request 
data as and when they require it, e.g. when 
reviewing a particular case, or testing a new feature 
detection algorithm.  
The second part of our system assumes that devices 
and sensors are exposed as Grid Services using the 
port types already mentioned; it then allows the data 
from these sensors to be archived in a timely fashion 
to an archival database. 
We have designed a custom Grid Service port type 
for this database, to tailor it to the kinds of data 
being stored and queries being performed. In the 
first version this is implemented directly over a 
Relational DataBase Management System using 
JDBC; this will migrate to use OGSA-DAI in the 
next version, in order to provide a generic Grid 
interface to the data archive. 

 



Data analysis and visualisation 
There are two distinct elements of data analysis and 
visualisation within our current approach: 
– Live sensor and device monitoring; and 
– Analysis and visualisation of archived data. 
The live monitoring component makes direct use of 
the defined sensor and device Grid Service port 
types to provide real-time status information. This is 
appropriate for interactive use, demonstration, 
trouble-shooting and configuration. 
Working with archived data uses the data archive 
service rather that the sensors and devices 
themselves, and is more appropriate for routine 
(occasional) monitoring and longer-term analysis. 
To support this activity we are developing a simple 
visual dataflow tool to allow non-programmers to 
get data from the archive and to view it in various 
ways. These elements are shown together on the 
deployment diagram shown in figure 5.  
New port types 
This section describes the port types that we have 
defined. We have sought to keep as close as possible 
to the design idioms of OGSA – as distinct from 
other distributed object systems such as CORBA or 
Java RMI – and it may be that others will find these 
examples illustrative in this respect. 

Sensor port type 
The sensor port type is in some ways is the most 
fundamental for the kinds of systems being 
considered. Each sensor port corresponds to exactly 
one sensor, which is characterised as: 
– some self-describing metadata, e.g. what kind 

of sensor it is, 

– its configuration, e.g. its sampling rate, and  
– zero or more data samples (of whatever 

phenomenon it senses). 
As far as Grid applications are concerned we 
consider the sensor service’s Grid Service Handle 
(GSH) to be the globally unique identity of the 
sensor (although it typically also exposes other 
forms of identification that are not specific to the 
Grid). We expect a sensor Grid service to be 
persistent, as long as the sensor exists ‘on the Grid’. 
Clearly, this does not prevent the sensor service 
migrating between hosts or being activated and 
deactivated by its run-time support environment. 
In OGSA, a service exposes information about itself 
or its internal state using Service Data Elements 
(SDEs) that can be queried and modified using 
standard operations in the common Grid Service 
port type. SDEs, analogous to properties in 
JavaBeans, support a standard introspection 
mechanism (again as SDEs) that is used by the 
standard Java-based service browser GUI provided 
with GT3, allowing a user to browse the service data 
of arbitrary Grid services. 
Port types can also extend (multiple) existing port 
types, if they also wish to support those interfaces. 
In our case, the sensor port type extends the 
following standard OGSI port types: 
– GridService: required by all Grid services to 

provide standard access to lifecycle operations 
and service data, and 

– NotificationSource: allowing clients to listen 
asynchronously for changes to the service data. 

and defines the service data elements shown in the 
following tables: 

Table 1:Sensor port type: self-description 
Name  # Mutability Modify? Description 
IdentifiedAs 1 Constant False Sensor ID, names and type 
Description 1 Mutable False Expanded description, e.g. placement, accuracy, etc. 
MeasurementTemplate 1 Constant False The format in which measurements are reported 
MeasurementDiscard- 
PolicyExtensibility 

1..* Constant False Acceptable XML schema types for the 
measurementDiscardPolicy SDE 

MeasurementPublication- 
PolicyExtensibility 

1..* Constant False Acceptable XML Schema types for the 
measurementPublishingPolicy SDE 

ConfigurationExtensibility 1..* Constant False Acceptable XML Schema types for sensor configuration SDE 
ProxyStatus 1 Mutable False Current status, e.g. in contact with proxy or disconnected 

Notes: 
– The various …Extensibility SDEs are analogous to OGSI’s GridService 

findServiceDataExtensibility SDE, and give the names of XML schema types that are 
understood by a particular Grid Service instance when used in the corresponding SDE (of XML schema type 
ogsi:ExtensibilityType, which is just a wrapper for XML Shema’s any). 

– We are evaluating SensorML [12] as a possible standard XML schema for sensor self-description; in the 
mean time we are using a simple placeholder type. 

– The measurementTemplate value allows a potential client to assess the kind of data that will be 
returned from a sensor even if it has not yet made any measurements. (It is also used internally in configuring 
the Sensor proxy in our current implementation.) 

 



Table 2:Sensor port type:  Externally modifiable configuration 
Name  # Mutability Modify? Description 
MeasurementDiscard- 
Policy 

1 Mutable True The conditions under which the sensor should discard 
historical measurements 

MeasurementPublishing- 
Policy 

1 Mutable True The conditions under which the sensor (proxy) should make 
a new measurement public 

configuration 0..* Mutable True Sensor-specific configuration information, e.g. sample rate 

Notes: 
– We do not expect or require that a sensor should retain its readings indefinitely. The 

measurementDiscardPolicy allows the conditions under which the sensor and/or the proxy discard 
old readings to be managed. A simple example would be to retain no more than some number of historical 
readings. 

– Different kinds of sensors may take measurements at widely varying rates, and each measurement may 
represent differing quantities of data. The measurementPublishingPolicy allows the way in which 
the sensor reveals (publishes) new measurements to be controlled. For example, a very rapidly sampling 
sensor might be configured to announce new measurements no more than 5 times per second (even if it is 
taking and making available 5000 measurements during this period). 

Table 3: Sensor port type: measurement 
Name  # Mutability Modify? Description 
Measurement 1 Mutable False The most recent measurement made by the sensor 
MeasurementCounter 1 Mutable False A running counter of measurements made 
MeasurementHistory 1 Mutable False The complete known history of measurements 

Notes: 
– The measurement SDE nominally exposes the most recently made measurement. However the 

measurementPublishingPolicy may mean that some measurements are not actually ‘published’ as a 
distinct value of this SDE. 

– The measurementCounter SDE exposes a running total (monotonically increasing) of the measurements 
performed by the sensor. Because the measurementPublishingPolicy may limit the measurements 
exposed directly through the measurement SDE, a client that requires all measurements should monitor 
this counter, and obtain any newly available measurements via a query to the measurementHistory 
SDE (below). 

– The measurementHistory SDE exposes the sensor’s full (retained) history of measurements. 
Depending on the measurementDiscardPolicy this may be quite a limited subset of measurements 
made, e.g. the last few measurements. We also define a new GridService::findSequenceData 
query expression type, queryByServiceDataNameAndCount, which (unlike the normal 
queryByServiceDataNames query expression type) allows a client to request only a subset of the 
available measurement history by providing a measurement counter range of interest. Following standard 
OGSA idiom, a query expression of the appropriate type is passed to the 
GridService::findSequenceData operation and the service responds accordingly. 

 

Sensor Measurement Types 
We have defined measurement, 
measurementHistory and 
measurementTemplate SDEs to have type 
ogsi:ExtensibilityType, i.e. any. 
However, we have also had to choose a default 
XML schema type for use in the services that we 
have developed and deployed. We have adopted 
XSIL, the eXtensible Scientific Interchange 
Language [13] as a standard XML format for 
exchanging sensor measurement data. In 
particular, XSIL defines a simple XML 
representation of a table of data, with self-defined 
column names, types and units, each row of 

which can then represent a single measurement (see 
sample below): 
<XSIL> 

 <Comment>Temp at depth of 3m</Comment> 

 <Param Name="sensorHandle" Value="…handle…"/> 

 <Table> 

 <Column Name="dateTime" Type="datetime"/> 

 <Column Name="counter" Type="int"/> 

 <Column Name="reading" Type="float" 
Unit="C"/> 

 <Stream Delimiter=",">2003-07-07 
10:11:12.000000, 123, 1.124, 

   2003-07-07 10:11:17.000000, 124, 
1.126</Stream> 

 </Table> 

</XSIL> 

 



Notes: 
– We have adopted the standard ISO-8601 

date-time format, and extended XSIL to 
support this as a first-class column type 
(“datetime”).  

– The “counter” column corresponds to the 
measurementCounter SDE’s value. 

– In some cases (e.g. from the archival 
database) the sensor’s Grid Service handle 
may appear as an explicit column in the table 
(if the table may include data from multiple 
sensors). 

– A multi-dimensional sensor, such as a two-
axis accelerometer, would have one column 
for each dimension of measurement (e.g. “X” 
and “Y” rather than just “reading”). 

Actuator Port Type 
We plan to design a corresponding actuator port 
type to allow notifications to propagate from the 
Grid back to sensing devices (e.g. the wearable).  
Our current focus has been on developing sensing 
from lightweight devices, however. 

Device Port Type 
The Device port type is somewhat simpler than 
the sensor port type. We regard a device as being 
a supporting or hosting hardware/software 
platform for zero or more sensors. We assume 
that each device is characterised by: 
– some self-describing metadata, e.g. what kind 

of device it is, and 
– zero or more references to the sensors that it 

hosts. 
As with sensors, we consider the device service’s 
Grid Service Handle (GSH) to be the globally 
unique identity of the device as far as Grid 
applications are concerned, and we expect a 

device Grid service to be persistent, as long as the 
device exists ‘on the Grid’.  
The device port type extends the following standard 
OGSI port types: 
– GridService: required by all Grid services to 

provide standard access to lifecycle operations 
and service data, and 

– NotificationSource: allowing clients to listen 
asynchronously for changes to service data. 

– ServiceGroup: exposing the device’s sensors in 
terms of their sensor Grid services.  

Exposing of its sensors through the ServiceGroup port 
type is the main function of the device service. A 
ServiceGroup supports notification by default, so a 
client of the device Grid service can receive 
notifications of sensor addition and removal. 
The device port type also defines the following 
additional service data elements (table 4). These mirror 
the corresponding SDEs in the sensor port type. 

Generic Device Proxy Factory Port Type 
The generic device proxy factory is specific to our 
proxy-based implementation of device and sensor 
proxies: a Grid service directly hosted by a sensor or 
device would have no need of such a port type. We 
include it here for completeness. 
The device proxy factory port type is very simple and 
extends the following standard OGSI port types: 
– GridService: required by all Grid services, to 

provide standard access to lifecycle operations 
and service data, and 

– NotificationSource: to allow clients to listen 
asynchronously for changes to service data. 

– ServiceGroup: exposing the device proxies that it 
has created, and used for device discovery. 

Factory: allowing clients to request the creation of new 
device proxy service instances. 

Table 4: Device port type: self-description 
Name # Mutability Modify? Description 
IdentifiedAs 1 Constant False Device ID, names and type 
Description 1 Mutable False Expanded description, e.g. including placement, 

accuracy, etc. 
ProxyStatus 1 Mutable False Current status of sensor, e.g. in contact with proxy or 

disconnected 

It defines one piece of static (port type) service data, 
which is a value for the 
ogsi:createServiceExtensibility 
SDE, identifying the specific XML schema type 
required as the creation parameter to 
Factory::createService. We have also 
added an additional operation, the Device port type 
getCreationInfo, allowing a client to obtain 
instance-specific information from newly created 
device proxy services. This is a work-around for 
Factory::createService not returning the 
ExtensibilityOutput in GT3 release 1.0 (and 
is an otherwise standard OGSI notification factory). 

The particular XML schema required by the generic 
device proxy factory allows the requesting client to 
override the normal service deployment properties, 
e.g. instantiating the correct GridServiceBase 
sub-class appropriate to the device that they are 
connected to the Grid. The client can also specify an 
initial set of sensor proxies to be created, as well as 
provide custom configuration information specific 
to their device and/or sensor proxies. 
At present we provide a simple command-line client 
to request the creation of a new device proxy. 
However, some devices (such as the wearable) 
would be capable of directly requesting the creation 

 



of the Grid proxy, although this would raise 
additional security considerations. 

Database port type 
We have defined a custom port type for our sensor 
data archive, so that most clients can work in terms 
of domain-specific types (such as XSIL 
measurement records), rather than having to use a 
generic database interface and types. Internally, the 
database service maps to these generic operations. 
The database port type is a standard operation-based 
interface, comparable to a CORBA or RMI 
interface. It supports addition and querying of: 
Devices; Sensor types; Sensors; Sensor self-
descriptions; and Sensor measurements. 
The user interfaces 

 
Figure 6: An initial standard interface 

The approach we have adopted allows the clinician 
exploiting the grid infrastructure to view the world 
as a series of Grid services providing a set of live 
clinical data. The clinician can view this data and 
manipulate it using standard data manipulation 
services. The clinician experience of these devices 
viewed from the grid is of a set of abstract data 
services. This data can then be presented using 
standard grid and web based facilities. Figure 6 is a 
screenshot of one of our early monitoring interfaces 
displaying the information arriving from the Grid 
services associated with the wearable device. We are 
in the process of refining these interfaces for use by 
clinicians by undertaking consultation with our 
clinical partners to establish their requirements. 
Summary 
In this paper we have provided an overview of our 
work to date on extending the Globus Grid Toolkit 
(GT3) to support lightweight mobile devices 
suitable from medical monitoring. We have 
presented an overview of the devices we have 
developed and the highly extensible underlying 
architecture and services deployed to connect these 
devices to the Grid. While we hope our approach 
can act as a blueprint for others seeking to conduct 

clinical trials on the Grid, before such architecture 
can be used in real clinical trials a number of 
significant challenges remain. Of these, a principle 
issue for future consideration is how we may 
provide appropriate security and address the privacy 
demands of this class of application. 
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