UK e-Science

Grid Infrastructure meets Biological Research Challenges

Malcolm Atkinson

Director of National e-Science Centre

www.nesc.ac.uk

2nd October 2002

The UK Biological Grid — Data and Computation

The Wellcome Trust Genome Campus

Hinxton, Cambridgeshire
Overview

- UK e-Science
 - Reminder of Investment and Infrastructure
- International e-Science
 - Examples and Collaboration
- Data Access and Integration
 - Lego Bricks for Scientific Application Developers
- A Computer Scientist’s View of Biology
 - Diversity and Opportunity
- The Way Ahead
e-Science

- Fundamentally about Collaboration
 - Sharing
 - Ideas
 - Thought processes and Stimuli
 - Effort
 - Resources
 - Requires
 - Communication
 - Common understanding & Framework
 - Mechanisms for sharing fairly
 - Organisation and Infrastructure

Scientists (Biologists) have done this for Centuries
Fundamentally about Collaboration

- Sharing
 - Ideas
 - Thought processes and Stimuli
 - Effort
 - Resources
 - Communication
 - Common understanding & Framework
 - Mechanisms for sharing fairly
 - Organisation and Infrastructure

Text, digital media, structured, organised & curated data, computable models, visualisation, shared instruments, shared systems, shared administration, …
Nationally & Internationally Distributed, …
Routine, Daily, Automated, …

That Requires very Significant Investment in Digital Systems and their Support
e-Science (take 3)

- Fundamentally about Collaboration
 - Sharing
 - Ideas
 - Thought processes and Stimuli
 - Effort
 - Resources
 - Requires
 - Communication
 - Common understanding & Framework
 - Mechanisms for sharing fairly
 - Organisation and Infrastructure

The Grid SHOULD make this much easier by providing a common, supported high-level of Software and Organisational infrastructure.

Digital networks, digital work-places, digital instruments, …

Metadata, ontologies, standards, shared curated data, shared codes, …

Common platforms, shared software, shared training, …

Authentication, Authorisation, Accounting, Provenance, Policies, …

Shared Provision of Platform,
Grid Expectations

- **Persistence**
 - Always there, Always Working, Always Supported

- **Stability**
 - You can build on foundations that don’t move

- **Trustworthy & Predictable**
 - Honours commitments
 - Digital policies, digital contracts, security, …
 - Data integrity, longevity and accessibility
 - Performance

- **High-level & Extensible**
 - The capabilities you need are already there

- **Ubiquitous**
 - Your collaborators use it
Grid Reality

- **Persistence**
 - Always there, Always Working, Always Supported

- **Stability**
 - You can build on foundations that don't move

- **Trustworthy & Predictable**
 - Honours commitments
 - Digital policies, digital contracts, security, …
 - Data integrity, longevity and accessibility
 - Performance

- **High-level & Extensible**
 - The capabilities you need are already there

- **Ubiquitous**
 - Your collaborators use it

Political, Economic & Technical issues to Solve

Early days but Open Grid Services link with Web Services + GGF standardisation

Not yet but very substantial global effort to achieve this

Good basis for extension Commitment to basic functionality WS + Community effort

Global & Industrial Rallying Cry Must work with Web Services
UK Grid Network

Access Grid
always-on video walls

National e-Science Centre

HPC(x)
National e-Science Centre

- **Events**
 - Workshops
 - Research Meetings
 - International Meetings

- **History of Events**
 - GGF5
 - HPDC11
 - Summer school
 - > 50 workshops held
 - > 1000 people in total
 - Many return often

- **Planned Events**
 - 25 workshops
 - Conferences to 2005

- **Visitors**
 - 3 arrived
 - 4 arranged

- **International collaboration, visits & visitors**
 - China
 - Argonne National Lab
 - SDSC
 - NCSA
 - ...

- **Centre Projects**
- Pilot Projects
- Regional Support
- Research Projects
 - EPSRC, MRC, WT, SHEFC
A day in the life of NeSC
Online Access to Scientific Instruments

DOE X-ray grand challenge: ANL, USC/ISI, NIST, U.Chicago

From Steve Tuecke 12 Oct. 01
DataGrid Testbed

- HEP sites
- ESA sites

- Testbed Sites

Francois.Etienne@in2p3.fr - Antonia.Ghiselli@cnaf.infn.it
A Simplified Grid Anatomy

Scientific Users

- Monitoring
- Diagnosis
- Logging
- Scheduling
- Accounting
- Authorisation

Scientific Application

Grid Plumbing & Security Infrastructure

- Owners
- Data & Compute Resources

Application Developers

Operations Team

Distributed
A Biological Grid Anatomy

Biological Users

Scientific Application

Monitoring Diagnosis Data Integration

Scheduling Accounting Data Access

Grid Plumbing & Security Infrastructure

Data & Compute Resources

Structured Data

Distributed
Database Growth

EMBL Database Growth
total record number (millions)

[Bar chart showing EMBL database growth over years]

PDB protein structures

[Bar chart showing PDB protein structures over years]
Scientific Data

- **Deluge of Data**
 - **Exponential growth**
 - Doubling times
 - Astronomy: 12 months
 - Bio-Sequences: 9 months
 - Functional Genomics: 6 months
 - Bytes/dollar: 12 to 18 months

- **Not How big it is but**
Scientific Data

- Deluge of Data
 - Exponential growth
 - Doubling times
 - Astronomy: 12 months
 - Bio-Sequences: 9 months
 - Functional Genomics: 6 months
 - Bytes/dollar: 12 to 18 months

- Not How big it is but
- What you do with it
 - Sharing
 - Curation
 - Metadata
 - Automated movement, access & integration
 - Computational Access
Scientific Data

- Deluge of Data
 - Exponential growth
 - Doubling times
 - Astronomy: 12 months
 - Bio-Sequences: 9 months
 - Functional Genomics: 6 months
 - Bytes/dollar: 12 to 18 months

Not how big it is but

- How you Embrace & Manage Change
 - The Database is a Knowledge chest
 - The Database is a Communication Hub
 - Autonomously Managed (Curated) change
 - An Essential part of e-BioMedical Science
Wellcome Trust: Cardiovascular Functional Genomics

Glasgow

Shared data

Edinburgh

Leicester

London

Oxford

Public curated data

Netherlands
Data Access & Integration

- Central to e-Science
 - Especially Earth Sciences, Ecology, Biology & Medicine

- Collaboration
 - Shared Databases
 - Curated Knowledge
 - Accumulated Observations
 - Accumulated Simulations

- Computation
 - Data mining
 - Input to models
 - Calibration of models

- Presentation
 - Publication of results
 - Visualisation
GGF DAIS WG

- **Chairs**
 - Norman Paton (Manchester Uni.)
 - Leanne Guy (CERN)
 - Dave Pearson (Oracle UK)

- **Activity**
 - BoF GGF4 Toronto
 - WG Meeting GGF5 Edinburgh
 - Papers for GGF6
 - Workshops & Mail lists

- **Goals**
 - Agree Standards for Database Access & Integration
 - Freely available reference implementations
 - OGSA-DAI one source & focus for discussions
OGSA-DAI project

- Lego kit for Data Access & Integration
 - Components for e-Science Applications
 - Accelerated Application Development
 - Multiple Data Models
 - Distributed Data
 - Access via Grid & Proxies
 - Integration, Translation & Transformation

- Open Source Reference Implementation
 - For DAIS-WG standard

- Trigger for Component Construction
 - Start a community
OGSA-DAI Partners

£3 million, 18 months, started February 2002

EPCC & NeSC
IBM UK
IBM USA
Manchester e-SC
Newcastle e-SC
Oracle
Primary Components
Advanced Components

Client

GDS:PerformScript

GDS

DB

Translation

GDT

Translation

Consumer
Composed Components

Translation

GDS

Client

GDS:performScript

GDS:performScript

GDS:performScript

GDT

Translation

GDT

Consumer

GDS:performScript

GDS:performScript

GDS:performScript
Distributed Query

DQP : Distributed Query Processor
GDT : Grid Data Transport
T : Translation
Q : Query
GDTV : Grid Data Transport Vehicle
F : Factory
QPM : Query Progress Monitor
PNM : Progress Notification Message
AM : Application Metadata
CRM : Computational Resource Metadata
NS : Notification Sink
OGSA-DAI Time Line

WS + GSI UK support (> 100 downloads)
XML + OGSA Prototypes for Early Adopters

Design Documents & Demos for DAIS WG @ GGF5

XML + OGSA Prototype Available
RDB + GT2 / OGSA Prototypes Available

GGF6 WG Papers & Prototypes
Ship Alpha Release for GT3 Integration
Presentation & Beta @ GGF7
Productisation, RAMPS & Extension

Feb '02 May '02 Jul '02 Sep '02 Dec '02 Feb '03 May '03 Sep '03
Phase 1 Starts Phase 2 Starts
OGSA-DAI Summary

- On Schedule & Going Well
- Contributions via DAIS-WG @ GGF5 & 6
- Releases with GT3 Releases scheduled
- Status: Early Days
 - Released prototypes
 - Tested Architectural Design
 - Using OGSA
 - Working with Early Adopter Pilot Projects
 - AstroGrid & MyGrid
- Influence OGSA-DAI direction
 - Via DAIS-WG & Direct messages to us
Biomedical e-Scientists

- Is this one species?
 - Understanding bird energy
 - Understanding a river / ocean interaction
 - Understanding a biochemical pathway
 - Understanding a cell
 - Understanding a Heart or Brain
 - Understanding Rhododendra
 - Understanding Evolution
 - ...

- No One-Size fits all solutions
 - But sharable re-usable components
Many, many …
 - More than we can address
 - Compute needs
 - Data management needs
 - Data integration needs
 - …

Must choose some pioneers
 - To meet a range of common requirements
 - To provoke rich & high-level platform
 - To generate re-usuable components

A Long-Term Commitment Needed
Advancing Biological Grid

Biological Users

Scientific Application

Biomedical (Grid) Application Component Library

Monitoring Diagnosis Data Integration
Scheduling Accounting Data Access

Grid Plumbing & Security Infrastructure

Data & Compute Resources Structured Data

Distributed
Summary

- **e-Science**
 - Data as well as Compute Challenges
 - Needed to be put together
 - Need ubiquitous supported consistent platforms

- **Grid**
 - A (potentially) invaluable platform
 - Only show in town

- **Data Integration**
 - Hard \(\Rightarrow\) Develop & Use Standard kit of parts
 - Started to build the kit

- **Opportunities**
 - No one-size fits all, but re-usable subsystems
 - Invest in wider range of Problem driven pioneering
 - Strategic choices needed